Integer Data Compression for Large Scale
Computations

Mike Dvorak
Computational Mathematics Undergraduate
University of Minnesota - Duluth
Argonne National Laboratory

Argonne, Illinois 60439

September 28, 2000

Prepared in partial fulfillment of the requirements of the Office of Science
under the direction of Dr. Mike Minkoff in the Mathematics and Computer
Science Division at Argonne National Laboratory.

Participant:

Signature

Research Advisor:

Signature

Abstract

This project began with a need for the ability to compress a large
data matrix of standard programming data types (integer and float-
ing point types) into a smaller memory space in the hope of reduced
computer file input and output (I/O). The project will deal with data
compression three different ways: binary, numerical and encoded com-
pression. Qur initial work has been with the binary data type. Stan-
dard data types tend to use more memory than required to store the
actual data. By removing most bits that do not contain data and com-
pressing an array of data into a binary string, it is possible to reduce
the amount of memory that is required to store an array. Some appli-
cations also do not require 100% accuracy. For these applications, it is
possible to be within some certain error. This implementation includes
the ability to specify absolute error as a compression parameter.

Contents

1 Background and Introduction 3
2 Application Programmer Interface 4
2.1 Integer Compression Library Overview 5
2.2 Integer compress Function 5
2.3 Integer decompress Function 5
3 Integer Compression Implementation 6
3.1 ANSI Compiler Definition of Integer 6
3.2 C Implementation., . 6
3.3 Compression Algorithm 7
3.4 Quality Assuranceo 9
3.5 Compression Performance Analysis 9
4 Continuing Research 10
5 Acknowledgements 11

1 Background and Introduction

Standard programming data types often are inefficiently used and can waste
space in memory. Smaller programs can get away with this waste but large
parallel programs need to optimize the way that they store their data in
memory and on disk. The motivation behind this project is to find a way
to run programs that have normally required an high amount of disk 1/0 to
run either partially or exclusively in memory with a compressed data format.
A natural place to start was with integer compression due to the homogene-
ity of the register storage space. Floating point types that conform to the
IEEE Floating Point Standard [2] have separate parts for the sign, mantissa
and exponent of the floating point number. Integers naturally only include
the sign bit and the binary integer itself. Therefore it seemed like a natural
choice to start compressing integer data on different machine architectures
to gain confidence in our compression methods. Currently the integer com-
pression will be useful to a large-scale quantum chemistry package named

COLUMBUS. !

Concurrently a sister project is being worked on at the DOE Ames Lab
lead by Ricky Kendall dealing with floating point compression. Both research
units at Ames Lab and Argonne National Lab share a common Concurrent
Version System (CVS) code and documentation repository. This allows both
teams to view each others work as well work on the same code directory in a
secure manner. Both teams also communicate over the Multi-User Dungeon
(the MUD) for collaborative purposes. This virtual reality text based pro-
gram allows users to create virtual environment similar to that of the real
world.

Our first testing with the binary string idea included compressing two
integers of appropriate size into one 32-bit long integer (using ANSI C).
This testing proved successful but did not allow much freedom of integer
size or optimal compression. The next implementation includes a memory
allocation of a integer array into which we planned to optimally compress the
entire integer (lossless) into the array string. We ran into some challenging
problems with this implementation with losing data while shifting bits over
element boundaries.

Our current implementation included the ability for the user to compress
the data in either a lossy or lossless fashion. The API that is explained below
allows the user to specify an absolute error > 0. Earlier implementations
wrote the compressed data out to hard disk on the local machine and then
loaded the data back into memory. Later implementations may use memory
mapping to cut back some of the associated disk /0.

2 Application Programmer Interface

An important part of this project is the definition of the application program-
mer interface (API). As stated by Chen [3] in their API library specification,
the compression library should have several design goals. These goals mainly
stressed the importance of a portable implementation that allows the user to
tailor the library to their needs at runtime (rather than at compile time). Ac-
cording to the API’s project goals, the user should not have to worry about
where the compressed data is stored (memory or permanent storage).

Thttp://www.itc.univie.ac.at/ hans/Columbus/columbus.html

2.1 Integer Compression Library Overview

The API has the ability to compress both floating-point and integer data
maftrices. Initial implementations will only include the ability to compress
single dimensional arrays leaving the user to deal with the implementation
details of a multidimensional array. Since this paper deals mainly with integer
data compression, the API for the compression and decompression function
are shown below:

int compress(int origArr[], const int numElem,
BIT_FILE *BitOutputFile, const int absError, int *compByteLength);

int decompress(BIT_FILE #InputBitFile, int decompArr[],
const int numElem, const int absError, int const *compBytelLength) ;

2.2 Integer compress Function

The compress function takes an integer array that is in memory (origArr) of
size numElem and compresses it out to a BIT_FILE? pointer *BitOutputFile
in the local directory with absolute error less than or equal to the integer
absError.” The pointer to the compByteLength integer tells the compression
algorithm the size of the numerical words in the file. The user can specify
zero for the absolute error if they wish to obtain lossless compression.

2.3 Integer decompress Function

The decompress function uses the same parameter specifications that the
compress function requires. The array undergoes the reverse of the compres-
sion process. Most importantly, the bits undergo a left shift when being read
back into the memory array. This is where the acceptable absolute error is
introduced into the elements.

Zas defined by Nelson [4]
3 Absolute error is defined as Az =z, — z

3 Integer Compression Implementation

3.1 ANSI Compiler Definition of Integer

The ANSI C Standard [1] specifies several different parameters for compliant
compilers. Adherence to this standard is very important to this project
since this API will be running on several different architectures. Among the
most important aspects are the dimensions of various integer types. Several
constants are included in the < limzts.h > file which is included with each
C compiler. The ANSI C Standard [1] states “[The type’s| defined values
shall be equal or great in magnitude (absolute value) to those shown, with
the same sign.” The table below list some of these relevant values:

Constant Value
INT_MIN -31767
INT_MAX +32767

UINT-MAX 65535
LONG_MIN -2147483647
LONG_MAX | 42147483647
ULONG_MAX | 4294967295

These values were important considerations for the implementation be-
cause the integer values must be checked to ensure that data is not corrupted
by underflow and overflow conditions.

3.2 C Implementation

Most operations performed in C are bytewise meaning that they are oriented
to eight bits. Most work in compression is performed bitwise. This leads to
some special challenges that must be overcome when trying to compress and
decompress data in memory and on disk. Fortunately, other work has been
done in this area. Nelson [4] provides a very nice implementation of a bitio
library in C. This implementation sets up a data structure for bit-files:

typedef struct bit_file {
FILE *file;
unsigned char mask;
int rack;
int pacifier_counter;
} BIT_FILE;

Besides the obvious open/close functions, four main functions (void In-
pulBit, void InputBils, int OutputBit, int OulpulBits) are provided for file
I/O. These functions allow the user to read/write to storage without worry-
ing about some of the bitwise specifics. While the bitio library provided us
with a basic bit-file operations, other bit operations were still necessary. The
standard bit-shift and bit-arithmetic operators were used extensively (with
care though) through out the implementation.

During testing, it was necessary to create large arrays of random inte-
gers, calculate the number of bits that were required for a integer and do a
few other miscellaneous routines. A intCompressAbs library was created for
these tasks. Included in the file was also the current implementation of the
compress and decompress functions which varies in a few parameter values
from the API at this time.

3.3 Compression Algorithm

An accurate and lightweight algorithm is crucial for the performance of the
compression software. Although many lossy and lossless data compression
algorithms exist i.e. Huffman, Adaptive Huffman, Arithmetic, LZ77, etc...,
many of these programs do not take advantage of the C integer and floating
point types. For example, some applications i.e. computational chemistry
problems, use sparse matrices that have many zero entries. A large scale
sparse matrix may included for example one million consecutive zero entries.
It does not make sense to encode all of these entries individually. Instead it
makes much more sense to include in the compressed data a statement that
say “the next million entries are zeros”. By not using one of these standard
compression algorithms, you are given the ability to add custom functionality
to the data compression.

The compression algorithm that was used for the integer compression
that is talked about in this paper is listed below:

1. Find the maximum value in the array that you are going to compress.

2. Given a specific acceptable absolute error, find out how many bits are
required to represent that absolute error.

3. Read in an integer that is to be compressed.

4. Bit-shift the integer to the right the required number of bits and write
out to file or memory only the |mazInt| — |absError| for that integer.

*p points to first bit in registry

/
ERRRRRNNNNEENNNREREEE

32 bit long integer

Figure 1: Standard piece of integer memory.

1olof1]t]of1
required
bits

Figure 2: Integer using only a minimal amount of space in memory.

5. Repeat step 1-6 until the entire array has been compressed.

Step 2 is necessary for lossy compression of integers. The user specifies
an acceptable amount of error in the compress function call. The number
of bits required to represent the data is then calculated. For example, if
the amount of acceptable error was +8, then three bits (2°) could be lost
during compression. Figure 1 shows a standard piece of integer memory
most programming environments. Figure 2 shows a piece of memory that
uses only the minimal amount of space. This integer can be further reduced
by shifting it the acceptable number of error bits to the right.The only thing
that needs to be written out to disk or memory is the first bits up to the
point where the absolute error is relevant.

The end result of compressing the integer array is that a large binary
string is created either in memory or storage that contains the compressed
array. Figure 3 shows a picture of several integers going into this compressed
string. This binary string can be decompressed with the decompress func-

(ofoltftjoft} lo[tji[tfo[tfo] - -

ofofo[1]1]o1]

Iy + absError I, + absError 1, + absError

Figure 3: Binary string of compressed integer data.

tion. Ideally a header would be included in the file containing the compres-
sion parameters i.e. word length and the amount of absolute error to allow
for automatic decompression. Future implementations may provide these
features.

3.4 Quality Assurance

Throughout this project, it was necessary at times to ensure that the com-
pression and decompression was being done within the specifications of the
project and the API. Small testing programs were made that compared the
original and compressed data. As the project develops, more rigorous testing
methods will be devised.

3.5 Compression Performance Analysis

After completion of the absolute error module, the program was executed
on three different machines at the High Performace Computing Research
Facility (MCS) at Argonne National Laboratory (ANL). The three differenct
machines that were used for testing at ANL were a Intel Celeron Linux
workstation, a 28 node Origin 2000 / Reality Monster (Denali), and a 512
CPU Linux cluster (Chiba City). Although this program is run sequentially,

the three different machines provided a way to compare results on different
machine architectures. The testing consisted of using a Perl script to run
through several different parameter values and array sizes. The table below
gives a sample of some of the data that was obtained from Chiba City:

Parameter File size (kb) Time (sec)
testSize | maxIntSize | absError | uncmp | cmp reg read | cmp read
240000 | 30000 10 960 360 0.527466 | 0.264599
240000 | 30000 100 960 270 0.515900 | 0.204616
240000 | 30000 1000 960 180 0.515882 | 0.146407
240000 | 30000 2000 960 150 0.508485 | 0.126291
240000 | 30000 4000 960 120 0.527156 | 0.105392

These results were somewhat interesting. By accepting an error of +1000
(+3.33%) it was possible to reduce the array read time from file by more
than a factor of 3. File size was also reduced by more than a factor of 5.
Due to the very similar natures of the compress and decompress functions,
run times for these functions were virtually identical in testing.

4 Continuing Research

The use of encoding is the last way that we intend to compress matrix data.
By identifying elements in the matrix that appear more often than others, it
is possible to give these common elements an abbreviated notation. Common
algorithms exist to do such compression i.e. the Huffman Algorithm. Using
a variant of this algorithm, it will be possible to compress the binary string
into yet a smaller piece of memory.

The remainder of this research project will focus on the completion and
testing of the integer compression library. An existing chemistry applica-
tion will provided some benchmark times to compare the performance of the
existing data storage methods verses the newer compressed methods.

Future implementations will include both the ability to compress both
floating point and integer arrays. The final API will allow any programmer
the ability to compress and decompress data seamlessly and optimally in
their applications.

10

5 Acknowledgements

I would like to thank my advisor Dr. Mike Minkoff of the Mathematics and
Computer Science Division (MCS) at Argonne National Laboratory for his
guidance and support. I would also like to thank Ricky Kendall at Ames
Laboratory and Ron Shepard at ANL for the joint project support. Thanks
also goes to the Department of Energy, the National Science Foundation,
MCS at Argonne and Argonne National Laboratory for creating, organizing
and funding the program. Finally I would like to thank the High Performance
Computing Research Facility at Argonne for the use of their exceptional
computing facilities.

References

[1] AMERICAN NATIONAL STANDARDS INSTITUTE. American National
Standard for Information Systems: Programming Language - C, 1989.

[2] THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
IEEFE Standard for Binary Floating Point Arithmetic. 345 East 47th
Street, New York, NY 10017, USA, MAR 1985. ANSI/IEEE Std 754-
1985.

[3] KENDALL, R., SHEPARD, R., MINKOFF, M., DVORAK, M., AND
CHEN, W. A generic compression library for high performance dis-
tributed applications.

[4] NELSON, M., AND GAILLY, J.-L. The Data Compression Book. M&T
Books, 1996.

11

